NON-CONVEX PERTURBATIONS OF MAXIMAL MONOTONE DIFFERENTIAL INCLUSIONS

by A. CELLINA' AND M. V. MARCHI

ABSTRACT

We give an existence result for

$$\dot{x} \in -Ax + F(x)$$

where A is a maximal monotone map and F is a set-valued map, with images not necessarily convex.

Introduction

Differential inclusions of the form $\dot{x} \in -Ax + F(t, x)$ where A is a maximal monotone operator and F is Lipschitzian in x, have been considered in [3]. In [2] the single-valued perturbation is replaced by a set-valued map, convex and upper semicontinuous and the existence of solutions is proved by a fixed point approach based on Kakutani's theorem.

In [1] inclusions of the form $\dot{x} \in F(t, x)$, i.e. with A = 0, have been treated, with no convexity assumptions on F, by a selection argument and by the use of Schauder's theorem. It is our purpose to present an existence theorem for differential inclusions

$$\dot{x} \in -Ax + F(t,x)$$

where A is a maximal monotone operator and F is continuous but not necessarily convex-valued.

We wish to point out that, although the approach is the same selection approach as in [1], the properties of solutions of a differential equation with a monotonic right hand side force us to prove the existence of a selection, continuous from L^1 into L^1 . The procedure of [1] would not, in general, yield a selection enjoying this property.

On Leave from S.I.S.S.A., Trieste, Italy. Received February 11, 1982 and in revised form April 24, 1983

1. Notations and preliminary results

In the following $|\cdot|$, $\langle \cdot, \cdot \rangle$ and **d** will denote respectively the norm, the inner product and the Hausdorff metric induced by $|\cdot|$ on the space of non-empty compact subsets of \mathbb{R}^n . For S a subset of \mathbb{R}^n , $|S| \doteq \sup\{|s|: s \in S\}$.

Let *I* be a compact interval of *R*. By $L^{1}(I)$, $L^{\infty}(I)$, C(I) we will denote respectively the sets of integrable, essentially bounded and continuous functions from *I* into R^{n} ; by $\|\cdot\|_{1,I}$ (whenever there is no ambiguity by $\|\cdot\|_{1}$) the norm in $L^{1}(I)$; by $\|\cdot\|_{\infty,I}$ (resp. $\|\cdot\|_{\infty}$) the norm in $L^{\infty}(I)$ and C(I) and by *B* (resp. \mathring{B}) the closed (resp. open) unit ball in $L^{\infty}(I)$.

Let $a \in R$ and $\{T_i\}$ be an increasing unbounded sequence of positive numbers. Set $J_i = [a, a + T_i]$. By $L^1_{loc}[a, \infty)$ we will denote the space of functions from $[a, \infty)$ into R^n locally integrable on $[a, \infty)$ provided with the topology induced by the family of seminorms $\|\cdot\|_{1,J_i}$.

Let A be a maximal monotone operator in \mathbb{R}^n , i.e. a map from a subset D(A) of \mathbb{R}^n into the subsets of \mathbb{R}^n such that

$$\langle x_1 - x_2, y_1 - y_2 \rangle \ge 0$$
 for $(x_i, y_i) \in A$, $i = 1, 2$ and $R(I + A) = R^n$.

Let $a \in R$ and $x^0 \in \overline{D(A)}$. Consider the problems

(P₁)
$$\dot{x} \in -Ax + f(t), \quad x(a) = x^0$$

and

(P₂)
$$\dot{x} \in -Ax + F(t, x), \quad x(a) = x^0.$$

The following is known about (P_1) .

THEOREM 1.1. Let $f \in L^1_{loc}[a, \infty)$. Then there exists a unique solution u(f) to (P_1) , defined on $[a, \infty)$. The solution satisfies:

(i)
$$\|\dot{u}(f)\|_{1,I} \leq C[(1+T+\|f\|_{1,I})(1+\|u(f)\|_{\infty,I})+|u(\tau)|^2]$$

where C is a constant depending upon A, for every $I = [\tau, \tau + T]$ included in $[a, \infty)$.

Moreover for f and g in $L^1_{loc}(a,\infty)$ and for every t

(ii)
$$|u(f)(t) - u(g)(t)| \leq \int_{a}^{t} |f(s) - g(s)| ds$$

In particular, for $f \equiv 0$, (P₁) has a unique solution $u(0)(\cdot)$. Let *i* be the function from $L^{1}_{loc}[a,\infty)$ into itself defined by i(f) = u(f). The above Theorem in particular implies the following.

PROPOSITION 1.1. The function *i* is continuous.

Let F be a map from $[a, \infty) \times D(A)$ into the subsets of \mathbb{R}^n . By solution to (\mathbb{P}_2) we mean a function u such that for some measurable selection f(t) from F(t, u(t)), u is solution to (\mathbb{P}_1) .

We seek a solution to (P_2) defined on $[a, \infty)$. We assume that F satisfies the following.

Assumption (H). There exist two non-negative functions α , β , locally integrable on $[a, \infty)$, such that

$$|F(t,x)| \leq \alpha(t)|x| + \beta(t).$$

Let I be a compact interval of R. Define the function $M_a: L^1(I) \to C(I)$ by

$$M_a(u)(t) = (2a)^{-1} \int_{-a}^{+a} u(t+s) ds.$$

PROPOSITION 1.2. M_a is continuous.

We shall need the following results about totally bounded subsets of $L^{1}(I)$ [4].

PROPOSITION 1.3. A subset K of $L^{1}(I)$ is totally bounded iff it is bounded and

$$\lim_{t\to 0}\int_I |u(t+s)-u(s)|\,ds=0$$

uniformly for u in K. In this case, for every $\varepsilon > 0$ there exists a > 0 such that

$$\sup\{\|M_au-u\|_1:u\in K\}<\varepsilon.$$

PROPOSITION 1.4. K compact in $L^{1}(I)$ implies that

$$\tilde{K} \doteq \left(\bigcup_{a>0} M_a K\right) \cup K$$

is compact in $L^{1}(I)$.

2. Main results

We wish to prove the following existence theorem for solutions to

$$(\mathbf{P}_2) \qquad \dot{\mathbf{x}} \in -\mathbf{A}\mathbf{x} + F(t,\mathbf{x}), \qquad \mathbf{x}(a) = \mathbf{x}^0.$$

THEOREM. Let A be a maximal monotone operator in \mathbb{R}^n and F a continuous map from $[a, \infty) \times \overline{D(A)}$ into the compact subsets of \mathbb{R}^n , satisfying assumption (H). Then there exists a solution to (\mathbb{P}_2) defined on $[a, \infty)$. The proof of the above theorem rests upon a continuous selection argument (Theorem 2.1 below) and on Schauder's Fixed Point Theorem. We shall define a continuous function $g: L^1_{\text{Loc}}[a,\infty) \to L^1_{\text{Loc}}[a,\infty)$, a selection from F in the sense that for every u in a suitable subset of $L^1_{\text{Loc}}[a,\infty)$ and a.e. t in $[a,\infty)$, $g(u)(t) \in F(t,u(t))$. Recalling the definition of the continuous map $i: L^1_{\text{Loc}}[a,\infty) \to L^1_{\text{Loc}}[a,\infty)$ given in section 1, as the function that associates to f the unique solution to (P₁), the problem will be reduced to that of finding a fixed point of the map

For this purpose we shall define a compact and convex subset of $L_{Loc}^{1}[a,\infty)$ mapped into itself by $i \circ g$. In the following Lemma we begin by a statement concerning the invariance of a given set. Recall that u(0) is the solution to (P_1) corresponding to $f \equiv 0$.

LEMMA 2.1. Let A be a maximal monotone operator in \mathbb{R}^n and F a continuous map from $[a,\infty) \times D(A)$ into the compact subsets of \mathbb{R}^n , satisfying assumption (H). Let w be a function from $[a,\infty)$ into \mathbb{R}^n and $u:[a,\infty) \to \mathbb{R}^n$ be a solution to (P₁) for f(t) a measurable selection from F(t, w(t)). Then whenever w satisfies the inequality

(2.1)
$$|w(t) - u(0)(t)| \leq \int_a^t \gamma(s) e^{\int_a^t \alpha(t) dt} ds$$

where $\gamma(t) = \alpha(t) |u(0)(t)| + \beta(t)$, so does u.

PROOF. By assumption

$$|f(t)| \leq \alpha(t)|w(t)| + \beta(t) \leq \alpha(t)|w(t) - u(0)(t)| + \gamma(t)$$

hence, when w satisfies inequality (2.1),

$$\int_{a}^{t} |f(s)| ds \leq \int_{a}^{t} \alpha(s) \int_{a}^{s} \gamma(l) \exp\left(\int_{l}^{s} \alpha(m) dm\right) dl ds + \int_{a}^{t} \gamma(s) ds$$
$$= \int_{a}^{t} \gamma(l) \int_{l}^{t} \alpha(s) \exp\left(\int_{l}^{s} \alpha(m) dm\right) ds dl + \int_{a}^{t} \gamma(s) ds$$
$$= \int_{a}^{t} \gamma(l) \int_{l}^{t} \frac{d}{ds} \exp\left(\int_{l}^{s} \alpha(m) dm\right) ds dl + \int_{a}^{t} \gamma(s) ds$$
$$= \int_{a}^{t} \gamma(l) \left[\exp\left(\int_{l}^{t} \alpha(m) dm\right) - 1\right] dl + \int_{a}^{t} \gamma(s) ds$$
$$= \int_{a}^{t} \gamma(l) \exp\left(\int_{l}^{t} \alpha(m) dm\right) dl.$$

By Theorem 1.1 we know that

$$|u(t) - u(0)(t)| = |u(f)(t) - u(0)(t)| \le \int_0^t |f(s)| ds$$

concluding the proof.

LEMMA 2.2. Let $I = [\tau, \tau + T]$ for some T > 0. Let K be a subset of $L^1(I)$, bounded in $L^*(I)$. Let D be a subset of R^n containing the range of u for each u in K. Let F be a continuous function from $I \times D$ into the compact subsets of R^n satisfying assumption (H). Then for every $\varepsilon > 0$ there exists δ such that for u and w in K, $||u - w||_1 < \delta$ implies

$$\int_{I} \mathbf{d}(F(t, u(t)), F(t, w(t))) dt < \varepsilon.$$

PROOF. Let P be such that for every u in K, $||u||_x \leq P$. Let η be such that for $|x| \leq P$ and $|y| \leq P$, $|x - y| < \eta$ implies $\sup\{d(F(t, x), F(t, y)) : t \in I\} < \varepsilon/3T$ and

$$\int_{E} \left[P\alpha(t) + \beta(t) \right] dt < \varepsilon/3$$

whenever $E \subset I$ and $m(E) \leq \eta$.

For u and w in K, define $E = E(u, w) = \{t \in I : |u(t) - w(t)| > \eta\}$. Whenever $||u - w||_1 < \eta^2 \doteq \delta$, $m(E) < \eta$. Hence

$$\int_{I} \mathbf{d}(F(t, u(t)), F(t, w(t)))dt$$

$$= \int_{E} \mathbf{d}(F(t, u(t)), F(t, w(t)))dt + \int_{I\setminus E} \mathbf{d}(F(t, u(t)), F(t, w(t)))dt$$

$$\leq \int_{E} \{\alpha(t)(|u(t)| + |w(t)|) + 2\beta(t)\}dt + \varepsilon/3Tm(I\setminus E)$$

$$< 2\varepsilon/3 + \varepsilon/3$$

$$= \varepsilon.$$

The following is the result on the existence of a continuous selection.

THEOREM 2.1. Let K, D and F be as in Lemma 2.2. Assume moreover that K is compact and D convex. Then there exists a continuous function $h: K \to L^{1}(I)$ such that for each u in K, $h(u)(t) \in F(t, u(t))$ a.e. on I.

PROOF. Actually we shall have to define h on the compact $\tilde{K} \supset K$. Remark that the convexity of D implies that F(t, u(t)) is defined for every u in \tilde{K} . Let us define a sequence of functions $g^i : \tilde{K} \rightarrow L^1(I)$ satisfying:

(a) $\int_{I} d(g^{i}(u)(t), F(t, u(t))) dt < 2^{-i}$ for every u in \tilde{K} ;

(b) for every η , for every *i*, there exists ρ_i such that for every *u* in *K*, $||u - w||_1 < \rho_i$ implies $g^i(u)(t) = g^i(w)(t)$ at every *t* in $I \setminus E(u)$, where E(u) is a finite union of subintervals of *I* such that $m(E(u)) < \eta$.

(c) $\int_{I} |g^{i+1}(u)(t) - g^{i}(u)(t)| dt < 2^{-(i-1)}$ for every u in \tilde{K} .

Since $K \subset PB$, then $\tilde{K} \subset PB$. Let Δ_0 be such that for $|x| \leq P$ and $|y| \leq P$, $|x - y| < \Delta_0$ implies $\sup\{d(F(t, x), F(t, y)): t \in I\} < 1/3T$, and δ_0 be such that for u and w in K, $||u - w||_1 < \delta_0$ implies

$$\int_{I} \mathbf{d}(F(t, u(t)), F(t, w(t))) dt < \frac{1}{3}$$

Choose a(0) such that $\sup\{||M_{a(0)}u - u||_1 : u \in \tilde{K}\} < \delta_0$, set for simplicity $M = M_{a(0)}$ and define, for each u in \tilde{K} :

$$0^{0}(u) = \{ w \in \tilde{K} : \| Mu - Mw \|_{\infty} < \Delta_{0} \} = M^{-1}(Mu + \Delta_{0}B).$$

By Proposition 1.2, $0^{\circ}(u)$ is open. Let $\{0^{\circ}(u_i^{\circ})\}$ be a finite subcover of $\{0^{\circ}(u): u \in K\}$. Let $\{I_i^{\circ}\}$ be the partition of *I* defined by setting, following [1], for each u in \tilde{K}

$$I_1^0(u) = [\tau, \tau + Tp_1(u)], \qquad I_i^0(u) = \left[\tau + T\sum_{j=1}^{i-1} p_j(u), \tau + T\sum_{j=1}^{i} p_j(u)\right]$$

for $i \ge 2$, where $\{p_i^o\}$ is the partition of unity subordinate to $\{0^o(u_i^o)\}$.

Choose $v_i^0(t)$, a measurable selection from $F(t, Mu_i^0)$, and define, for each u in \tilde{K}

$$g^{0}(u)(t) = \sum_{i} v^{0}_{i}(t)\chi^{0}_{i}(u)(t)$$

where $\chi_i^0(u)$ is the characteristic function of $I_i^0(u)$.

Fix u in \tilde{K} . Set for simplicity, $I_i = I_i^0(u)$. Then

$$\int_{I_{i}} d(g^{0}(u)(t), F(t, u(t)))dt$$

$$\leq \int_{I_{i}} d(v_{i}^{0}(t), F(t, Mu_{i}^{0}(t)))dt + \int_{I_{i}} \mathbf{d}(F(t, Mu_{i}^{0}(t)), F(t, Mu(t)))dt$$

$$+ \int_{I_{i}} \mathbf{d}(F(t, Mu(t)), F(t, u(t)))dt.$$

The first integral is zero, the second is bounded by $m(I_i)/3T$, hence

- (a) $\int_{I} d(g^{0}(u)(t), F(t, u(t))) dt < \frac{1}{3} + \int_{I} d(F(t, Mu(t)), F(t, u(t))) dt < \frac{2}{3} < 1$,
- (b) follows from the uniform continuity of $\{p_i^0\}$.

Assume we have defined g^i satisfying (a) and (b) above up to i = n. Define g^{n+1} satisfying (a), (b) and (c) as follows. Let η be such that

$$\int_{E} [P\alpha(t) + \beta(t)] dt < 2^{-(n+1)}/12,$$

whenever $E \subset I$ and $m(E) < \eta$. Let δ_{n+1} be such that for every u in \hat{K} , $||u - w||_1 < \delta_{n+1}$ implies at once

$$\int_{I} \mathbf{d}(F(t, u(t)), F(t, w(t))) dt < 2^{-(n+1)}/3$$

and $g^{n}(u)(t) = g^{n}(w)(t)$ at every t in $I \setminus E(u)$, where E(u) is a finite union of subintervals of I such that $m(E(u)) < \eta$. Choose $\Delta_{n+1} < \delta_{n+1}/T$ such that for $|x| \le P$ and $|y| \le P$, $|x - y| < \Delta_{n+1}$ implies

$$\sup\{\mathbf{d}(F(t,x),F(t,y)):t\in I\} < 2^{-(n+1)}/3T.$$

Choose a(n+1) so that:

$$\sup\{\|M_{a(n+1)}u - u\|_1 : u \in \tilde{K}\} < \delta_{n+1}.$$

Set for simplicity $M \doteq M_{a(n+1)}$ and define, for each u in \tilde{K} :

$$0^{n+1}(u) = \{ w \in K : \| Mu - Mw \|_{\infty} < \Delta_{n+1} \} = M^{-1}(Mu + \Delta_{n+1}\check{B}).$$

Let $\{0^{n+1}(u_i^{n+1})\}$ be a finite subcover of this open cover of \tilde{K} . For each *i* choose $v_i^{n+1}(t)$, a measurable selection from $F(t, Mu_i^{n+1}(t))$, such that for almost every *t* in *I*

$$\left|g^{n}(Mu_{i}^{n+1})(t)-v_{i}^{n+1}(t)\right|=d\left(g^{n}(Mu_{i}^{n+1})(t),F(t,Mu_{i}^{n+1}(t))\right).$$

Let I_i^{n+1} be the partition of *I* defined, as before, by a partition of unity associated to $\{0^{n+1}(u_i^{n+1})\}$. Set $\chi_i^{n+1}(u)$ the characteristic function of the interval $I_i^{n+1}(u)$ and define

$$g^{n+1}(u)(t) = \sum_{i} v_{i}^{n+1}(t)\chi_{i}^{n+1}(u)(t).$$

Fix u in K. Set for simplicity $I_i = I_i^{n+1}(u)$.

(a)
$$\int_{I_{i}} d(g^{n+1}(u)(t), F(t, u(t)))dt$$

$$< \int_{I_{i}} d(v_{i}^{n+1}(t), F(t, Mu_{i}^{n+1}(t)))dt + \int_{I_{i}} \mathbf{d}(F(t, Mu_{i}^{n+1}(t)), F(t, Mu(t)))dt$$

$$+ \int_{I_{i}} \mathbf{d}(F(t, Mu(t)), F(t, u(t)))dt.$$

The first integral is zero, the second, by definition of $0^{n+1}(u_i^{n+1})$, is bounded by $m(I_i)2^{-(n+1)}/3T$. Hence

$$\int_{I} d(g^{n+1}(u)(t), F(t, u(t))) dt < 2^{-(n+1)}/3 + \int_{I} d(F(t, Mu(t)), F(t, u(t))) dt$$
$$< 2 \frac{2^{-(n+1)}}{3}$$
$$< 2^{-(n+1)}.$$

(b) As before.

$$(c) \int_{I_{i}} |g^{n+1}(u)(t) - g^{n}(u)(t)| dt$$

= $\int_{I_{i}} |v_{i}^{n+1}(t) - g^{n}(Mu_{i}^{n+1})(t) + g^{n}(Mu_{i}^{n+1})(t) - g^{n}(Mu)(t) + g^{n}(Mu)(t) - g^{n}(u)(t)| dt$

$$\leq \int_{I_{i}} d(g^{n}(Mu_{i}^{n+1})(t), F(t, Mu_{i}^{n+1}(t)))dt$$

+ $\int_{I_{i}} |g^{n}(Mu_{i}^{n+1})(t) - g^{n}(Mu)(t)|dt$
+ $\int_{I_{i}} |g^{n}(Mu)(t) - g^{n}(u)(t)|dt.$

Moreover:

$$\begin{split} \int_{I_i} d(g^n(Mu_i^{n+1})(t), F(t, Mu_i^{n+1}(t))) dt \\ &\leq \int_{I_i} |g^n(Mu_i^{n+1})(t) - g^n(Mu)(t)| dt + \int_{I_i} d(g^n(Mu)(t), F(t, Mu(t))) dt \\ &+ \int_{I_i} d(F(t, Mu(t)), F(t, Mu_i^{n+1}(t))) dt. \end{split}$$

Hence

$$\int_{I} |g^{n+1}(u)(t) - g^{n}(u)(t)dt|$$

$$= \sum_{i} \int_{I_{i}} |g^{n+1}(u)(t) - g^{n}(u)(t)| dt$$
(2.2)
$$\leq 2 \sum_{i} \int_{I_{i}} |g^{n}(Mu_{i}^{n+1})(t) - g^{n}(Mu)(t)| dt + \int_{I} d(g^{n}(Mu)(t), F(t, Mu(t))) dt$$

$$+ \sum_{i} \int_{I_{i}} \mathbf{d}(F(t, Mu(t)), F(t, Mu_{i}(t))) dt + \int_{I} |g^{n}(Mu)(t) - g^{n}(u)(t)| dt.$$

When $m(I_i) > 0$, then $||Mu_i^{n+1} - Mu||_{\infty} < \Delta_{n+1}$, thus

$$\sum_{i} \int_{I_{i}} \mathbf{d}(F(t, Pu(t)), F(t, Mu_{i}^{n+1}(t))) dt < \sum_{i} \frac{2^{-(n+1)}}{3T} \cdot m(I_{i}) < \frac{2^{-(n+1)}}{3}.$$

The choice of Δ_{n+1} implies $||Mu_i^{n+1} - Mu||_1 < \delta_{n+1}$, thus $g^n(Mu_i^{n+1})(t) = g^n(Mu)(t)$ at every t in $I \setminus E(Mu)$ and $m(E(Mu)) < \eta$. As a consequence

$$2\sum_{i}\int_{I_{i}}|g^{n}(Mu_{i}^{n+1})(t)-g^{n}(Mu)(t)|dt < 2\int_{E(Mu)}2(P\alpha(t)+\beta(t))dt < \frac{2^{-(n+1)}}{3}.$$

In the same way we prove

$$\int_{I} |g^{n}(Mu)(t) - g^{n}(u)(t)| dt < \frac{2^{-(n+1)}}{6}$$

Thus (2.2) becomes

$$\int_{I} |g^{n+1}(u)(t) - g^{n}(u)(t)| dt < 2 \cdot 2^{-(n+1)}/3 + 2^{-(n+1)}/6$$
$$+ \int_{I} d(g^{n}(Mu)(t), F(t, Mu(t))) dt.$$

Point (a) of the induction implies that the last term is bounded by 2^{-n} , hence

$$\int_{I} |g^{n+1}(u)(t) - g^{n}(u)(t)| dt < 2^{-n-1} + 2^{-n} < 2^{-(n-1)}$$

Note that from (b) it follows that every $g^i : \tilde{K} \to L^1(I)$ is continuous. Indeed fix $\varepsilon > 0$ and choose η so that $\int_E [P\alpha(t) + \beta(t)]dt < \varepsilon/2$ whenever $E \subset I$ and $m(E) < \eta$. Set ρ_i as in (b). Then for every u in \tilde{K} , $||u - w||_1 < \rho_i$ implies

$$\int_{I} |g^{n}(u)(t) - g^{n}(w)(t)| dt = \int_{E(u)} |g^{n}(u)(t) - g^{n}(w)(t)| dt$$
$$< 2 \int_{E(u)} [P\alpha(t) + \beta(t)] dt$$
$$< \varepsilon.$$

The sequence of functions g^i is, by (c), a Cauchy sequence, thus it converges to a continuous function h. For every u in K, the sequence $g^i(u)$ converges in $L^1(I)$ to h(u), hence there exists a subsequence which converges pointwise to h(u) for almost every t in K. Since $d(g^i(u)(t), F(t, u(t)))$ converges to 0 and F(t, u(t)) is closed, $h(u)(t) \in F(t, u(t))$ for almost every t in I.

THEOREM 2.2. Let A and F be as in Lemma 2.1. Then there exists a solution to (P_2) defined on $[a, \infty)$.

PROOF. By the above results the proof consists in defining a compact convex set K and a suitable map transforming K into itself. Let K be the subset of $L^{1}_{loc}[a,\infty)$ consisting of those absolutely continuous u satisfying:

- (i) $u(a) = x^0$ and $u(t) \in \overline{D(A)}$,
- (ii) $|u(t) u(0)(t)| \leq \int_a^t \gamma(s) \exp(\int_s^t \alpha(l) dl) ds$,

and

(iii) $\|\dot{u}\|_{1,I} \leq C[(1+T+N(I))(1+M(I))+|r(\tau)^2|]$ for every $I = [\tau, \tau + T]$, $\tau \geq a$, where we set

$$M(I) = \exp\left(\int_{I} \alpha(t)dt\right) \cdot \int_{I} \gamma(t)dt + \|u(0)(\cdot)\|_{\infty,I},$$
$$N(I) = M(I) \int_{I} \alpha(t)dt + \int_{I} \beta(t)dt,$$

and

$$r(\tau) = |u(0)(\tau)| + 2 \int_a^{\tau} \gamma(t) \exp\left(2 \int_t^{\tau} \alpha(s) ds\right) dt.$$

K is nonempty since it contains $u(0)(\cdot)$; it is convex since so does D(A); it is compact since, for each I, the set $K_I = \{u \mid i : u \in K\}$ is, by Proposition 1.3, compact in $L^1(I)$. Moreover, by (ii), K_I is bounded in $L^{\infty}(I)$.

Set $I_1 \doteq J_1$, $I_i \doteq \overline{J_i \setminus J_{i-1}}$ for $i = 2, 3, \dots$. By Theorem 2.1, we can define a family of continuous functions $h_i : K_{I_i} \rightarrow L^1(I_i)$ such that, for each u in K,

$$g_i(u \mid I_i)(t) \in F(t, u(t))$$
 a.e. on I_i .

Thus the function $g: L^{1}_{loc}(a, \infty) \rightarrow L^{1}_{loc}(a, \infty)$ defined by

$$g(u)(t) = \begin{cases} h_1(u \mid I_1)(t) & t \in I_1, \\ h_i(u \mid I_1)(t) & t \in J_i \setminus J_{i-1}, \quad i = 2, 3, \cdots \end{cases}$$

is continuous and satisfies $g(u(t)) \in F(t, u(t))$, a.e. on R.

Define s from K into $L^{1}_{loc}(a, \infty)$ by s(u) = i(g(u)). The continuity of s follows from Proposition 1.1.

Since for every u, g(u) is a selection from F(t, u(t)), by Lemma 2.1, s(u)satisfies (ii). Thus in particular it follows that $||s(u)||_{\infty,I} \leq M(I)$ and $|s(u)(\tau)| \leq r(\tau)$. By assumption (H), $||g(u)||_{1,I} \leq N(I)$. Hence, by Theorem 1.1 (i), s satisfies (iii). So K is invariant under s, and, by Schauder's Theorem, it has a fixed point, a solution to (P₁) defined on $[a, \infty)$.

References

1. H. Antosiewicz and A. Cellina, *Continuous selections and differential relations*, J. Differ. Equ. **19** (1975), 386-398.

2. H. Attouch and D. Damlamian, On multivalued evolution equations in Hilbert spaces, Isr. J. Math. 12 (1972), 373-390.

3. H. Brezis, Opérateurs Maximaux Monotones et Semigroupes Nonlinéaires, North-Holland, 1971.

4. K. Yoshida, Functional Analysis, Springer-Verlag, Berlin, 1968.

CEREMADE

Université Paris XI — Dauphine France

Instituto di Matematica, Informatica e Sistemistica Università di Udine

ITALY