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NON-CONVEX PERTURBATIONS OF MAXIMAL
MONOTONE DIFFERENTIAL INCLUSIONS

BY
A. CELLINA" AND M. V. MARCHI

ABSTRACT
We give an existence result for

X € -~ Ax + F(x)

where A is a maximal monotone map and F is a set-valued map, with images
not necessarily convex.

Introduction

Differential inclusions of the form ¥ € — Ax + F(¢t, x) where A is a maximal
monotone operator and F is Lipschitzian in x, have been considered in [3]. In [2]
the single-valued perturbation is replaced by a set-valued map, convex and
upper semicontinuous and the existence of solutions is proved by a fixed point
approach based on Kakutani’s theorem.

In [1] inclusions of the form x € F(¢, x), i.e. with A =0, have been treated,
with no convexity assumptions on F, by a selection argument and by the use of
Schauder’s theorem. It is our purpose to present an existence theorem for
differential inclusions

i€ - Ax +F(1x)

where A is a maximal monotone operator and F is continuous but not
necessarily convex-valued.

We wish to point out that, although the approach is the same selection
approach as in [1], the properties of solutions of a differential equation with a
monotonic right hand side force us to prove the existence of a selection,
continuous from L' into L'. The procedure of [1] would not, in general, yield a
selection enjoying this property.
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1. Notations and preliminary results

In the following |- |, {-,-) and d will denote respectively the norm, the inner
product and the Hausdorfl metric induced by || on the space of non-empty
compact subsets of R". For S a subset of R", |S|=sup{|s|:s € S}.

Let I be a compact interval of R. By L'(I), L™(I), C(I) we will denote
respectively the sets of integrable, essentialy bounded and continuous functions
from I into R"; by ||-||;. (whenever there is no ambiguity by ||- ;) the norm in
L'(I); by || [l (resp. ||-|l=) the norm in L*(I) and C(I) and by B (resp. B) the
closed (resp. open) unit ball in L~(I).

Let a € R and {T:} be an increasing unbounded sequence of positive
numbers. Set J; =[a, a + T;]. By L.[a,%) we will denote the space of functions
from [a,®) into R" locally integrable on [a,) provided with the topology
induced by the family of seminorms |- ||, ;..

Let A be a maximal monotone operator in R", i.e. a map from a subset D(A)
of R" into the subsets of R" such that

(X1 =X, yi—y»=0 for (xi,y)€EA, i=1,2 and R(UI+A)=R"

Let a ER and x°€ D(A). Consider the problems

Py € -Ax+f(1), x(a)==x°
and
(P») XE€ —-Ax+F(t,x), x(a)=x"

The following is known about (P,).

THEOREM 1.1. Let f € Li.[a,®). Then there exists a unique solution u(f) to
(P1), defined on [a,»). The solution satisfies:

(@) la)ll = CIA+ T+ fll) @+ ulle) +u ()]

where C is a constant depending upon A, for every I =[r,7+ T] included in
[a,).
Moreover for f and g in Li..(a,©) and for every t

Gi () -u@ 1= [ 116)-805)l s

In particular, for f =0, (P,) has a unique solution u(0)(-). Let i be the
function from L o[ a, ) into itself defined by i(f) = u(f). The above Theorem in
particular implies the following.
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ProposITION 1.1.  The function i is continuous.

Let F be a map from [a, ©) X D(A) into the subsets of R". By solution to (P,)
we mean a function u such that for some measurable selection f(t) from
F(t,u(t)), u is solution to (P,).

We seek a solution to (P;) defined on [a,%). We assume that F satisfies the
following.

AssumpTION (H). There exist two non-negative functions o, 3, locally inte-
grable on [a, ), such that

|F(t.x)[ = a () x|+ B(t). a
Let I be a compact interval of R. Define the function M, : L'(I)— C(I) by

+a

M, (u)(t)=Qa)"’ f u(t + s)ds.

ProrosiTiON 1.2. M, is continuous.
We shall need the following results about totally bounded subsets of L'(I) [4].

PropoSITION 1.3. A subset K of L'(I) is totally bounded iff it is bounded and
lim f [u(t+s)—u(s)|ds=0
=0 Jr

uniformly for u in K. In this case, for every £ >0 there exists a >0 such that
sup{|Mou —ul,:u €K}<e.

ProPOSITION 1.4. K compact in L'(I) implies that

Kﬁ(u M«K)UK

a>0
is compact in L'(I).
2. Main results
We wish to prove the following existence theorem for solutions to
(P,) X€ —-Ax +F(t,x), x(a)=x".

THEOREM. Let A be a maximal monotone operator in R" and F a continuous
map from [a, )X D{A) into the compact subsets of R", satisfying assumption
(H). Then there exists a solution to (P;) defined on [a,=).
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The proof of the above theorem rests upon a continuous selection argument
(Theorem 2.1 below) and on Schauder’s Fixed Point Theorem. We shall define a
continuous function g : Lic[a,%®)— Lio[a,®), a selection from F in the sense
that for every u in a suitable subset of Li.[a,®) and ae. t in [a,),
g(u)(t)EF(t,u(t)). Recalling the definition of the continuous
map i : Lio[a,©)— Li.[a,®) given in section 1, as the function that associates
to f the unique solution to (P,), the problem will be reduced to that of finding a

fixed point of the map
u—>i(g(u)).

For this purpose we shall define a compact and convex subset of Ly.[a,®)
mapped into itself by iog. In the following Lemma we begin by a statement
concerning the invariance of a given set. Recall that u(0) is the solution to (P,)
corresponding to f=0.

LemMMA 2.1. Let A be a maximal monotone operator in R" and F a continuous
map from [a,®)X D(A) into the compact subsets of R", satisfying assumption
(H). Let w be a function from [a,®) into R" and u :[a,©)— R" be a solution to
(P)) for f(t) a measurable selection from F(t, w(t)). Then whenever w satisfies the
inequality

2.1 [w(t)—u0)()] 5;[: y(s)e/ O ds

where y(t) = a(t)|u(0)(t)|+ B(t), so does u.
PrOOF. By assumption

FOI=a@®w®]+BO=a@)|w(®)—u@)(®)|+ ()

hence, when w satisfies inequality (2.1),

L' [f(s)]ds éJ: a(s) f: y(I)exp ([a(m)dm) dids +Lt y(s)ds
= [ v [ arenp ([ atmyam) asai-+ [ v(spas
= J: Y(I)L‘Eds— exp (I’sa(m)dm) dsdl +Lt y(s)ds

= J: y() [exp (ﬁxa(m)dm) —1] dl +J: y(s)ds

= L' y(Dexp (fa(m)dm) dl.
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By Theorem 1.1 we know that

O~ O] = ()0 - wO©)= [ 1)l ds
concluding the proof. [ ]

LemMa 2.2. Let I =[1,7+T] for some T>0. Let K be a subset of L'(I),
bounded in L*(I). Let D be a subset of R" containing the range of u for each u in
K. Let F be a continuous function from I X D into the compact subsets of R"
satisfying assumption (H). Then for every € >0 there exists 8 such that for u and w
in K, ||u—wl, <8 implies

J d(F(t,u(t)), F(t, w(t)))dt < e.

PrROOF. Let P be such that for every u in K, ||u{j. = P. Let 5 be such that for

[x|=P and |y|=P, [x—y|<n implies supld(F(4, x), F(t,y)): t € I} < ¢/3T
and

L [Pa(t)+ B(t)]dt < /3

whenever E CI and m(E)= 1.
For u and w in K, define E = E(u,w)={t €I :|u(t)— w(t)|> n}. Whenever
lu—wl,<n®>=8 m(E)<mn Hence

f d(F(t,u(t)), F(t, w(t)))dt
= j d(F(t,u(t)), F(t, w(1)))dt + J;\E d(F(t, u(t)), F(t, w(2)))dt

g[ {a@®)(Ju@)|+|w()]))+2B(t)}dt + £/3Tm(I\E)
E

<2e/3+¢€/3

=¢. |
The following is the result on the existence of a continuous selection.

THEOREM 2.1. Let K, D and F be as in Lemma 2.2. Assume moreover that K
is compact and D convex. Then there exists a continuous function k : K — L'(I)
such that for each u in K, h(u)(t)€ F(t,u(t)) a.e. on L
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PrOOF. Actually we shall have to define i on the compact K D K. Remark
that the convexity of D implies that F(t, u(¢)) is defined for every u in K. Let us
define a sequence of functions g' : K— L'(I) satisfying:

(@) [id(g'(u)(), F(t,u(t)))dt <2~ for every u in K;

(b) for every m, for every i, there exists p; such that for every u in K|
lu — wll < pi implies g'(u)(¢) = g'(w)(t) at every ¢ in I\ E(u), where E(u)isa
finite union of subintervals of I such that m(E(u)) <.

© f11g"w)(t)~ g (u)(t)|dt <27 for every u in K.

Since K C PB, then K C PB. Let A, be such that for [x|<P and |y[=P,
|x ~y|< A implies sup{d(F (¢, x), F(t,y)): t €I} <1/3T, and &, be such that for
u and w in K, |u —w|; <& implies

L d(F(t,u(t)), F(t, w(1)))dr <3.

Choose a(0) such that sup{||M.ou —ui: u € K} < 8, set for simplicity M =
M, and define, for each u in K:

0°(u) ={w EK :||Mu — Mw |l. < A} = M™'(Mu + A,B).

By Proposition 1.2, 0°(u) is open. Let {0°(u?)} be a finite subcover of
{0°(u): u € K}. Let {I7} be the partition of I defined by setting, following [1], for
each u in K

wy=[nr+Tpw), Ilu)= [7 + T]_Z: pi(u), v+ T]; p;(u)[

for i =2, where {p} is the partition of unity subordinate to {0°(u?)}.
Choose v?(t), a measurable selection from F(t, Mu?), and define, for each u in
K

8" 1) =3 X (®)

where y?(u) is the characteristic function of I:(u).
Fix u in K. Set for simplicity, I; = I'(u). Then

[ aw . Fouepa

= f (%), F(t, Mu'(1)))dt + f d(F (1, Mu(1)), F(t, Mu (¢)))dt

+ f d(F(t, Mu(t)), F(t, u(t))dt.
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The first integral is zero, the second is bounded by m(I;)/3T, hence
@) [:d(@ (w)(@), F(t,u(e)))dt <i+ [, d(F(t, Mu(t)), F(t, u(t)))dt <3i<1,
(b) follows from the uniform continuity of {p{}.
Assume we have defined g' satisfying (a) and (b) above up to i = n. Define

n+l1

g"" satisfying (a), (b) and (c) as follows. Let i be such that

fﬂ [Pa(t)+ B(0)}dt <27 "/12,

whenever ECJI and m(E)<mn. Let 8.., be such that for every u in K,
lu —wll, < 8., implies at once

J d(F(t, u(t)), F(t, W(t)))dt < 2*(n+|)/3

and g"(u)(t)=g"(w)(t) at every t in I\E(u), where E(u) is a finite union of
subintervals of I such that m(E(u)) < n. Choose A,., < 8,.,/T such that for
|x|=Pand |y|=P, |x —y|<A,. implies

sup{d(F(t,x), F(t,y)): t €I} <27"*V/3T.

Choose a(n +1) so that:

sup{| Mausntt — ] : u € K} < 8,11

Set for simplicity M= M, (.., and define, for each u in K:

0""'(u)={w €K :|Mu—-Mwl|.<A..}=M"'(Mu+A,..B).

Let {0"*'(u]*")} be a finite subcover of this open cover of K. For each i choose
n+1 n+l

vi7'(t), a measurable selection from F(¢, Mu; " '(t)), such that for almost every ¢
in I

|g" (Mu?") (1) = vi"' (1) = d(g" (Mui™)(t), F(¢&, Mui™\(1))).

Let I7"" be the partition of I defined, as before, by a partition of unity

n+l

associdted to {0""'(u*")}. Set x7*'(u) the characteristic function of the interval
I'"(u) and define

g " (u)(1)= 2 ol (OX T () ().

Fix u in K. Set for simplicity I, = I7"'(u).
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@ | o Feu@
< J; | d(vi*\(t), F(t, Mu?"'(¢)))dt + L A d(F(t, Mu;"'(1)), F(t, Mu(t)))dt

+ f d(F(t, Mu(t)), F(t, u(2)))dt.

The first integral is zero, the second, by definition of 0"*'(u}*"), is bounded by
m(L)2""*Y/3T. Hence

j d(g""'(u)(), F(t,u(e)))dt <273 +j d(F(t, Mu(t)), F(t, u(t)))dt

2—(n+1)

<23

<27,
(b) As before.

© 18 w)0 -8 @l

= fl [0F"'(e) = 8" (Mui™")(t) + g" (Mui™') (1) — g" (Mu)(t)
+g" (Mu)(r) - g" (u)(t)| dt

éﬁ d(g" (Mu?™") (), F(t, Mu;*'(t)))dt
+ | 1" (Mur)0) = 8" (M) 1)
# [ 1er )0 g w0 de

Moreover:

[ ate sz o), Fo Muz o
= j, [g" (Mu*")(t)~ g" (Mu)(r)| dt +L d(g" (Mu)(1), F(t, Mu(t)))dt

+ j | d(F(t, Mu(t)), F(t, Mu;"'(t)))at.
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Hence

| 1gm ww-g il

=3 [ lg o -g @l
2.2)
=2 ZJI |g"(Mu.~"“)(t)—g"(Mu)(t)ldt+L d(g"(Mu)(t), F(t, Mu(t)))dt

+Z J'I d(F(r, Mu (1)), F(¢, Mu.-(t)))dt+fl lg" (Mu)(t)—g"(u)(t)|de

When m(L)>0, then [ Mu}"' — Mu . < A..,, thus

9=(n+D) —(n+1)

Zf, d(F(t,Pu(t)),F(t,Mu?H(t)))dt<Zi 7 m()<=5—.

The choice of A,., implies [Mu;"' —Mu|, < 8..1, thus g"(Mui™")(t)=
g"(Mu)(t) at every ¢ in I\E(Mu) and m(E(Mu))< 7. As a consequence

2 Z J: |g"(Muf'“)(t)—g"(Mu)(t)]dt<2L(Mu) 2(Pa(t)+ B(t))dt

o-(n+h)

3

<

In the same way we prove

—(n+1)

JIlg"(l\’fu)(t)—g"(u)(t)ldt<2 —

Thus (2.2) becomes

| lg @ -gr@wldr <222

+ [ a0, F G M)
T
Point (a) of the induction implies that the last term is bounded by 27", hence
f [g" (W) (t)—g"(w)(@)|dt <27 ' +27" <277,
I

Note that from (b) it follows that every g’ : K— L'(I) is continuous. Indeed
fix € >0 and choose 1 so that [ [Pa(t)+ B(t)]dt < e/2 whenever E C I and
m(E)< n. Set p; as in (b). Then for every u in K, |u —w||, < p, implies
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[ 18 @o-g"mola= [, e w0-g w0

<2[ [Pa(t)+ B(t)}de
E(u)
<e.

The sequence of functions g’ is, by (c), a Cauchy sequence, thus it converges
to a continuous function h. For every u in K, the sequence g'(u) converges in
L'(I) to h(u), hence there exists a subsequence which converges pointwise to
h(u) for almost every ¢ in K. Since d(g'(u)(t), F(t, u(t))) converges to 0 and
F(t,u(t))is closed, h(u)(t) € F(t, u(t)) for almost every ¢ in L. [ |

THEOREM 2.2. Let A and F be as in Lemma 2.1. Then there exists a solution to
(P>) defined on [a, ).

PrOOF. By the above results the proof consists in defining a compact convex
set K and a suitable map transforming K into itself. Let K be the subset of
L[, ) consisting of those absolutely continuous u satisfying:

() u(a)=x"and u(t)e D(A),

(i) [u(®)—u@))]=T.y(s)exp(fia(D)dl)ds,
and

@iii) i = C[(1+ T+ NI) A+ M) +|r(z)’|] for every I=[r,7+T],
T Z a, where we set

my=exp ([ awdr): [ @ +1u@C s

N(I)=M() j a(t)dt + j B(t)dt,

and
r(r) = |u(0)(r)] +2 f y(£)exp (2 f fa(s)ds) dr,

K is nonempty since it contains u(0)(-); it is convex since so does D(A); it is
compact since, for each I, the set K, ={u l, :u € K} is, by Proposition 1.3,
compact in L'(I). Moreover, by (ii), K; is bounded in L7(I).

Set I, =J,, I=J\J_fori=2,3,---. By Theorem 2.1, we can define a family
of continuous functions h; : Kj, = L'(I;) such that, for each u in K,

gw|)®EFut) ae onl.
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Thus the function g : Li.(a,%)— L.(a,*) defined by

h(u ],)(t) tel,

gu)(t) =
h(u|)() t€I\J., i=23, -

is continuous and satisfies g(u(t)) € F(t, u(t)), a.e. on R.

Define s from K into Li.(a,) by s(u) = i(g(u)). The continuity of s follows
from Proposition 1.1.

Since for every u, g(u) is a selection from F(t, u(t)), by Lemma 2.1, s{u)
satisfies (ii). Thus in particular it follows that ||s(u)}l.. = M(I) and |s(u)(r)| =
r(t). By assumption (H), || g(u)|l:., = N(I). Hence, by Theorem 1.1 (i), s satisfies
(iii). So K is invariant under s, and, by Schauder’s Theorem, it has a fixed point,
a solution to (P,) defined on [a, »). |
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